CuO-NPs-triggered heterophil extracellular traps exacerbate liver injury in chicks by promoting oxidative stress and inflammatory responses

CuO-NPs 触发的异嗜性细胞外陷阱通过促进氧化应激和炎症反应加剧小鸡的肝损伤

阅读:8
作者:Liqiang Jiang #, Wei Liu #, Jingnan Xu, Xinxin Gao, Haiguang Zhao, Shurou Li, Wenlong Huang, Zhengtao Yang, Zhengkai Wei

Abstract

With the widespread use of copper oxide nanoparticles (CuO-NPs), their potential toxicity to the environment and biological health has attracted close attention. Heterophil extracellular traps (HETs) are an innate immune mechanism of chicken heterophils against adverse stimuli, but excessive HETs cause damage. Here, we explored the effect and mechanism of CuO-NPs on HETs formation in vitro and further evaluated the potential role of HETs in chicken liver and kidney injury. Heterophils were exposed to 5, 10, and 20 µg/mL of CuO-NPs for 2 h. The results showed that CuO-NPs induced typical HETs formation, which was dependent on NADPH oxidase, P38 and extracellular regulated protein kinases (ERK1/2) pathways, and glycolysis. In in vivo experiments, fluorescence microplate and morphological analysis showed that CuO-NPs elevated the level of HETs in chicken serum and caused liver and kidney damage. Meanwhile, CuO-NPs caused hepatic oxidative stress (MDA, SOD, CAT, and GSH-PX imbalance), and also induced an increase in mRNA expression of their inflammatory and apoptosis-related factors (IL-1β, IL-6, TNF-α, COX-2, iNOS, NLRP3, and Caspase-1, 3, 11). However, these results were significantly altered by DNase I (HETs degradation reagent). In conclusion, the present study demonstrates for the first time that CuO-NPs induce the formation of HETs and that HETs exacerbate pathological damage in chicken liver and kidney by promoting oxidative stress and inflammation, providing insights into immunotoxicity and potential prevention and treatment targets caused by CuO-NPs overexposure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。