Directed differentiation of human pluripotent stem cells into epidermal stem and progenitor cells

人类多能干细胞定向分化为表皮干细胞和祖细胞

阅读:5
作者:Sonya Ruiz-Torres, Paul F Lambert, Kathryn A Wikenheiser-Brokamp, Susanne I Wells

Background

Pluripotent stem cells (PSCs) produced by somatic cell reprogramming self-renew in culture and can differentiate into any cell type, representing a powerful tool for disease modeling, drug screening, regenerative medicine, and the discovery of personalized therapies to treat tissue-specific pathologies. We previously reported the directed differentiation of human PSCs into epidermal stem and progenitor cells (ESPCs) and 3D epidermis to model the inherited syndrome Fanconi anemia (FA), wherein epidermal cell-junctional defects discovered using this system were validated in patient populations. Here, we describe in detail the corresponding protocol for generating PSC-derived keratinocytes using a distinct, normal PSC line (209.2 PSC).

Conclusions

This protocol provides an accelerated path for the generation of human ESPCs and 3D epidermal models to study normal epidermal development and homeostasis, elucidate mechanisms of epidermal disease pathogenesis, and provides a platform for developing personalized therapies.

Results

Our approach modifies previous protocols to minimize spontaneous cell death and terminal differentiation, eliminate cell stress-inducing keratinocyte selection steps, and reduce total protocol duration and cost. Independent donor-derived PSC lines were converted into ESPCs through the addition of relevant morphogens and a ROCK inhibitor. Results for the 209.2 PSC line highlight consistencies in 2D and also variable features in 3D epidermis compared to the previously published FA-PSC lines. 209.2 PSC-derived ESPCs exhibited a basal cell phenotype while maintaining the capacity to form epidermal organotypic rafts with morphology consistent with fetal epidermis. Transcriptional analyses demonstrated 209.2 ESPCs express epidermis-selective markers and not early endoderm markers, thus supporting an immature stage of p63+ epidermal development. Conclusions: This protocol provides an accelerated path for the generation of human ESPCs and 3D epidermal models to study normal epidermal development and homeostasis, elucidate mechanisms of epidermal disease pathogenesis, and provides a platform for developing personalized therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。