Decellularized nerve extracellular matrix/chitosan crosslinked by genipin to prepare a moldable nerve repair material

脱细胞神经细胞外基质/壳聚糖与京尼平交联制备可塑性神经修复材料

阅读:5
作者:Fangsong Zhang #, Naili Zhang #, Qing Xu #, Luping Zhang #, Chunlei Zhang, Hongfu Liu, Zhenhai Yu, Shuai Zhou, Guoying Feng, Fei Huang

Abstract

Decellularized nerve extracellular matrix (NECM) composited with chitosan are moldable materials suitable for spinal cord repair. But the rapid biodegradation of the materials may interrupt neural tissue reconstruction in vivo. To improve the stability of the materials, the materials produced by NECM and chitosan hydrogels were crosslinked by genipine, glutaraldehyde or ultraviolet ray. Physicochemical property, degradation and biocompatibility of materials crosslinked by genipin, glutaraldehyde or ultraviolet ray were evaluated. The scaffold crosslinked by genipin possessed a porous structure, and the porosity ratio was 89.07 + 4.90%, the average diameter of pore was 85.32 + 5.34 μm. The crosslinked degree of the scaffold crosslinked by genipin and glutaraldehyde was 75.13 ± 4.87%, 71.25 ± 5.06% respectively; Uncrosslinked scaffold disintegrated when immerged in distilled water while the scaffold crosslinked by genipin and glutaraldehyde group retained their integrity. The scaffold crosslinked by genipin has better water absorption, water retention and anti-enzymatic hydrolysis ability than the other three groups. Cell cytotoxicity showed that the cytotoxicity of scaffold crosslinked by genipin was lower than that crosslinked by glutaraldehyde. The histocompatibility of scaffold crosslinked by genipin was also better than glutaraldehyde group. More cells grew well in the scaffold crosslinked by genipin when co-cultured with L929 cells. The decellularized nerve extracellular matrix/chitosan scaffold crosslinked by the genipin has good mechanical properties, micro structure and biocompatibility, which is an ideal scaffold for the spinal cord tissue engineering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。