Regulator of G Protein Signaling 6 Facilities Cardiac Hypertrophy by Activating Apoptosis Signal-Regulating Kinase 1-P38/c-JUN N-Terminal Kinase 1/2 Signaling

蛋白信号转导调节剂 6 通过激活凋亡信号调节激酶 1-P38/c-JUN N 端激酶 1/2 信号转导来促进心脏肥大

阅读:9
作者:Zhijun Huang, Jingxian Shu, Weihong Jiang, Mengqing Jiang, Yao Lu, Haijiang Dai, Nana Xu, Hong Yuan, Jingjing Cai

Abstract

Background Regulator of G protein signaling 6 ( RGS 6) is an important member of the RGS family and produces pleiotropic regulatory effects on cardiac pathophysiology. However, the role of RGS 6 protein in cardiomyocytes during angiotensin II - and pressure overload-induced cardiac hypertrophy remain unknown. Methods and Results Here, we used a genetic approach to study the regulatory role of RGS 6 in cardiomyocytes during pathological cardiac hypertrophy. RGS 6 expression was significantly increased in failing human hearts and in hypertrophic murine hearts. The extent of aortic banding-induced cardiac hypertrophy, dysfunction, and fibrosis in cardiac-specific RGS 6 knockout mice was alleviated, whereas the hearts of transgenic mice with cardiac-specific RGS 6 overexpression exhibited exacerbated responses to pressure overload. Consistent with these findings, RGS 6 also facilitated an angiotensin II -induced hypertrophic response in isolated cardiomyocytes. According to the mechanistic studies, RGS 6 mediated cardiac hypertrophy by directly interacting with apoptosis signal-regulating kinase 1, which further activates the P38-c- JUN N-terminal kinase 1/2 signaling pathway. Conclusions Based on our findings, RGS 6 aggravates cardiac hypertrophy, and the RGS 6-apoptosis signal-regulating kinase 1 pathway represents a potential therapeutic target to attenuate pressure overload-driven cardiac remodeling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。