Dapagliflozin: a sodium-glucose cotransporter 2 inhibitor, attenuates angiotensin II-induced cardiac fibrotic remodeling by regulating TGFβ1/Smad signaling

达格列净:一种钠-葡萄糖协同转运蛋白 2 抑制剂,通过调节 TGFβ1/Smad 信号传导减轻血管紧张素 II 诱导的心脏纤维化重塑

阅读:5
作者:Yuze Zhang #, Xiaoyan Lin #, Yong Chu, Xiaoming Chen, Heng Du, Hailin Zhang, Changsheng Xu, Hong Xie, Qinyun Ruan, Jinxiu Lin, Jie Liu, Jinzhang Zeng, Ke Ma, Dajun Chai

Background

Cardiac remodeling is one of the major risk factors for heart failure. In patients with type 2 diabetes, sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce the risk of the first hospitalization for heart failure, possibly through glucose-independent mechanisms in part, but the underlying mechanisms remain largely unknown. This study aimed to shed light on the efficacy of dapagliflozin in reducing cardiac remodeling and potential mechanisms.

Conclusion

DAPA ameliorates Ang II-induced cardiac remodeling by regulating the TGF-β1/Smad signaling in a non-glucose-lowering dependent manner.

Methods

Sprague-Dawley (SD) rats, induced by chronic infusion of Angiotensin II (Ang II) at a dose of 520 ng/kg per minute for 4 weeks with ALZET® mini-osmotic pumps, were treated with either SGLT2 inhibitor dapagliflozin (DAPA) or vehicle alone. Echocardiography was performed to determine cardiac structure and function. Cardiac fibroblasts (CFs) were treated with Ang II (1 μM) with or without the indicated concentration (0.5, 1, 10 μM) of DAPA. The protein levels of collagen and TGF-β1/Smad signaling were measured along with body weight, and blood biochemical indexes.

Results

DAPA pretreatment resulted in the amelioration of left ventricular dysfunction in Ang II-infused SD rats without affecting blood glucose and blood pressure. Myocardial hypertrophy, fibrosis and increased collagen synthesis caused by Ang II infusion were significantly inhibited by DAPA pretreatment. In vitro, DAPA inhibit the Ang II-induced collagen production of CFs. Immunoblot with heart tissue homogenates from chronic Ang II-infused rats revealed that DAPA inhibited the activation of TGF-β1/Smads signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。