Long non-coding RNAs have age-dependent diurnal expression that coincides with age-related changes in genome-wide facultative heterochromatin

长链非编码RNA具有与年龄相关的昼夜表达,这与全基因组兼性异染色质的年龄相关变化相一致

阅读:6
作者:Jinhee Park, William J Belden

Background

Disrupted diurnal rhythms cause accelerated aging and an increased incidence in age-related disease and morbidity. The circadian clock governs cell physiology and metabolism by controlling transcription and chromatin. The goal of this study is to further understand the mechanism of age-related changes to circadian chromatin with a focus on facultative heterochromatin and diurnal non-coding RNAs.

Conclusions

The data suggest a model where some age-related changes in diurnal expression are partially attributed to age-related alterations to rhythmic facultative heterochromatin. The changes in heterochromatin are potentially mediated by changes in diurnal lncRNA creating an interlocked circadian-chromatin regulatory network that undergoes age-dependent metamorphosis.

Results

We performed a combined RNA-seq and ChIP-seq at two diurnal time-points for three different age groups to examine the connection between age-related changes to circadian transcription and heterochromatin in neuronal tissue. Our analysis focused on uncovering the relationships between long non-coding RNA (lncRNA) and age-related changes to histone H3 lysine 9 tri-methylation (H3K9me3), in part because the Period (Per) complex can direct facultative heterochromatin and models of aging suggest age-related changes to heterochromatin and DNA methylation. Our results reveal that lncRNAs and circadian output change dramatically with age, but the core clock genes remain rhythmic. Age-related changes in clock-controlled gene (ccg) expression indicate there are age-dependent circadian output that change from anabolic to catabolic processes during aging. In addition, there are diurnal and age-related changes in H3K9me3 that coincide with changes in transcription. Conclusions: The data suggest a model where some age-related changes in diurnal expression are partially attributed to age-related alterations to rhythmic facultative heterochromatin. The changes in heterochromatin are potentially mediated by changes in diurnal lncRNA creating an interlocked circadian-chromatin regulatory network that undergoes age-dependent metamorphosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。