Systemic oxidative stress in children with cystic fibrosis with bacterial infection including Pseudomonas Aeruginosa

患有细菌感染(包括铜绿假单胞菌)的囊性纤维化儿童的全身氧化应激

阅读:6
作者:Gabriela Datsch Bennemann, Emilia Addison Machado Moreira, Leticia Cristina Radin Pereira, Maiara Brusco de Freitas, Diane de Oliveira, Julia Carvalho Ventura, Eduardo Benedetti Parisotto, Yara Maria Franco Moreno, Erasmo Benicio Santos Moraes Trindade, Eliana Barbosa, Norberto Ludwig Neto, Danilo W

Conclusions

These results indicate a systemic OS in children with CF. The presence of bacterial infection particularly Pseudomonas aeruginosa seems to be determinant to exacerbate the oxidative damage to proteins, in which PC may be a useful biomarker of OS in CF.

Methods

Cross-sectional study including CF group (CFG, n = 55) and control group (CG, n = 31), median age: 3.89 and 4.62 years, respectively. CFG was distributed into CFG negative bacteriology (CFGB-, n = 27) or CFG positive bacteriology (CFGB+, n = 28), and CFG negative Pseudomonas aeruginosa (CFGPa-, n = 36) or CFG positive Pseudomonas aeruginosa (CFGPa+, n = 19).

Objective

The objective of this work is to evaluate the influence of bacterial infection on biomarkers of OS (catalase [CAT], glutathione peroxidade [GPx], reduced glutathione [GSH]), markers of oxidative damage (protein carbonyls [PC], thiobarbituric acid reactive substances [TBARS]), together with the nutritional status and lung function in children with CF.

Results

Compared with CG, CFG (P = .034) and CFGB+ (P = .042) had lower body mass index-for-age z-score; forced expiratory volume in the first second was lower in CFGB+ and CFGPa+ (both P < .001). After adjusting for confounders and compared with CG: CFG showed higher TBARS (P ≤ .001) and PC (P = .048), and lower CAT (P = .004) and GPx (P = .003); the increase in PC levels was observed in CFGB+ (P = .011) and CFGPa+ (P = .001) but not in CFGB- (P = .510) and CFGPa- (P = .460). Conclusions: These results indicate a systemic OS in children with CF. The presence of bacterial infection particularly Pseudomonas aeruginosa seems to be determinant to exacerbate the oxidative damage to proteins, in which PC may be a useful biomarker of OS in CF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。