Phosphoproteomic response of cardiac endothelial cells to ischemia and ultrasound

心脏内皮细胞对缺血和超声的磷酸化蛋白质组学反应

阅读:15
作者:Uchenna Emechebe, David Giraud, Azzdine Y Ammi, Kristin L Scott, Jon M Jacobs, Jason E McDermott, Igor V Dykan, Nabil J Alkayed, Anthony P Barnes, Sanjiv Kaul, Catherine M Davis

Abstract

Myocardial infarction and subsequent therapeutic interventions activate numerous intracellular cascades in every constituent cell type of the heart. Endothelial cells produce several protective compounds in response to therapeutic ultrasound, under both normoxic and ischemic conditions. How endothelial cells sense ultrasound and convert it to a beneficial biological response is not known. We adopted a global, unbiased phosphoproteomics approach aimed at understanding how endothelial cells respond to ultrasound. Here, we use primary cardiac endothelial cells to explore the cellular signaling events underlying the response to ischemia-like cellular injury and ultrasound exposure in vitro. Enriched phosphopeptides were analyzed with a high mass accuracy liquid chromatrography (LC) - tandem mass spectrometry (MS/MS) proteomic platform, yielding multiple alterations in both total protein levels and phosphorylation events in response to ischemic injury and ultrasound. Application of pathway algorithms reveals numerous protein networks recruited in response to ultrasound including those regulating RNA splicing, cell-cell interactions and cytoskeletal organization. Our dataset also permits the informatic prediction of potential kinases responsible for the modifications detected. Taken together, our findings begin to reveal the endothelial proteomic response to ultrasound and suggest potential targets for future studies of the protective effects of ultrasound in the ischemic heart.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。