A Dual-Action Molecule Suppresses S. aureus Infection as an Inhibitor Targeting Hla Pore Formation and TLR2 Signaling

双重作用分子可抑制金黄色葡萄球菌感染,作为针对 Hla 孔形成和 TLR2 信号传导的抑制剂

阅读:4
作者:Tingting Wang, Fan Jiang, Jianqing Su, Xiuling Chu, Yongguo Cao, Hongfa Lv, Xuming Deng, Jianfeng Wang

Abstract

Antibiotic resistance is the greatest challenge for the treatment of Staphylococcus aureus (S. aureus) infection under the global antibiotic resistance crisis. With the bottleneck period of the development of new antibiotics, novel alternative agents are urgently in need. In this study, the small molecule amentoflavone is identified as a dual-action inhibitor of Hla, a pore-forming virulence determinant particularly important for S. aureus pathogenicity and Toll-like receptor 2 (TLR2) signaling, which triggers inflammation response upon recognizing pathogen-associated molecular patterns. Amentoflavone treatment conferred effective protection against S. aureus pneumonia through this dual-action mechanism. Mechanically, amentoflavone effectively inhibited Hla pore formation, thereby reducing Hla-mediated cytotoxicity and tissue damage; at the same time, amentoflavone suppressed TLR2-mediated inflammatory response by blocking the interaction between TLR2 and its adapter myeloid differentiation primary response gene 88 (MyD88). Surprisingly, TLR2 signaling induced by synthetic bacterial TLR2 agonists and other heat-killed gram-positive bacteria is also blocked by amentoflavone. In summary, these results presented amentoflavone as a potential antibiotic alternative that curbed S. aureus infection by simultaneously suppressing host-damaging virulence determinants derived from bacteria and the detrimental effect of excessive inflammation derived from the host rather than bacteria viability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。