The Exocyst Component Exo70 Modulates Dendrite Arbor Formation, Synapse Density, and Spine Maturation in Primary Hippocampal Neurons

外囊成分 Exo70 调节原代海马神经元的树突棘形成、突触密度和树突棘成熟

阅读:4
作者:Matías Lira, Duxan Arancibia, Patricio R Orrego, Carolina Montenegro-Venegas, Yocelin Cruz, Jonathan García, Sergio Leal-Ortiz, Juan A Godoy, Eckart D Gundelfinger, Nibaldo C Inestrosa, Craig C Garner, Pedro Zamorano, Viviana I Torres

Abstract

Neurons are highly polarized cells displaying an elaborate architectural morphology. The design of their dendritic arborization and the distribution of their synapses contribute importantly to information processing in the brain. The growth and complexity of dendritic arbors are driven by the formation of synapses along their lengths. Synaptogenesis is augmented by the secretion of factors, like BDNF, Reelin, BMPs, or Wnts. Exo70 is a component of the exocyst complex, a protein complex that guides membrane addition and polarized exocytosis. While it has been linked to cytokinesis and the establishment of cell polarity, its role in synaptogenesis is poorly understood. In this report, we show that Exo70 plays a role in the arborization of dendrites and the development of synaptic connections between cultured hippocampal neurons. Specifically, while the overexpression of Exo70 increases dendritic arborization, synapse number, and spine density, the inhibition of Exo70 expression reduces secondary and tertiary dendrite formation and lowers synapse density. Moreover, increasing Exo70 expression augmented synaptic vesicle recycling as evaluated by FM4-64 dye uptake and the inverse was observed with downregulation of endogenous Exo70. Monitoring the formation of dendritic spines by super-resolution microscopy, we also observed that mRFP-Exo70 accumulates at the tip of EGFP-β-actin-positive filopodia. Together, these results suggest that Exo70 is essentially involved in the formation of synapses and neuronal dendritic morphology.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。