Differential activation of Gsk-3β in the cortex and the hippocampus induces cognitive and behavioural impairments in middle-aged ovariectomized rat

皮质和海马中 Gsk-3β 的差异激活导致中年卵巢切除大鼠的认知和行为障碍

阅读:8
作者:Anil Kumar Rana, Supriya Sharma, Damanpreet Singh

Abstract

Glycogen synthase kinase-3 (Gsk-3β) aberration act as a crucial pathogenic factor in several neurological conditions. However its role in menopause associated behavioural impairments is still not unclear. The present study was designed to understand the role of Gsk-3β in the progression of neurobehavioural impairments in middle-aged ovariectomized (ovx) rats. The animals showed a significant impairment in spatial and recognition memory, along with anxiety and depression-like behaviour following 22 weeks of ovx. The genomic expression of ERα, ERβ, Nrf2, HO-1, TNFα, and IL-6 was altered in both the cortex and the hippocampus of ovx rats. Protein expression of p-Gsk-3β(Ser9) was significantly downregulated in the cortex after ovx. However, the hippocampus showed a surprisingly opposite trend in the levels of p-Gsk-3β(Ser9) as that of the cortex. Differential activation of Gsk-3β and its downstream proteins such as β-catenin and p-mTOR were also altered following ovx. The study concluded that differential activation of Gsk-3β, along with oxidative stress and neuroinflammation in the cortex and the hippocampus, leads to the induction of cognitive and behaviour impairments in ovx rats.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。