Selective B cell depletion upon intravenous infusion of replication-incompetent anti-CD19 CAR lentivirus

静脉输注复制无能的抗 CD19 CAR 慢病毒可导致选择性 B 细胞耗竭

阅读:4
作者:Craig M Rive, Eric Yung, Lisa Dreolini, Scott D Brown, Christopher G May, Daniel J Woodsworth, Robert A Holt

Abstract

Anti-CD19 chimeric antigen receptor (CAR)-T therapy for B cell malignancies has shown clinical success, but a major limitation is the logistical complexity and high cost of manufacturing autologous cell products. If engineered for improved safety, direct infusion of viral gene transfer vectors to initiate in vivo CAR-T transduction, expansion, and anti-tumor activity could provide an alternative, universal approach. To explore this approach we administered approximately 20 million replication-incompetent vesicular stomatitis virus G protein (VSV-G) lentiviral particles carrying an anti-CD19CAR-2A-GFP transgene comprising either an FMC63 (human) or 1D3 (murine) anti-CD19 binding domain, or a GFP-only control transgene, to wild-type C57BL/6 mice by tail vein infusion. The dynamics of immune cell subsets isolated from peripheral blood were monitored at weekly intervals. We saw emergence of a persistent CAR-transduced CD3+ T cell population beginning week 3-4 that reaching a maximum of 13.5% ± 0.58% (mean ± SD) and 7.8% ± 0.76% of the peripheral blood CD3+ T cell population in mice infused with ID3-CAR or FMC63-CAR lentivector, respectively, followed by a rapid decline in each case of the B cell content of peripheral blood. Complete B cell aplasia was apparent by week 5 and was sustained until the end of the protocol (week 8). No significant CAR-positive populations were observed within other immune cell subsets or other tissues. These results indicate that direct intravenous infusion of conventional VSV-G-pseudotyped lentiviral particles carrying a CD19 CAR transgene can transduce T cells that then fully ablate endogenous B cells in wild-type mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。