Field hyperspectral data and OLI8 multispectral imagery for heavy metal content prediction and mapping around an abandoned Pb-Zn mining site in northern Tunisia

现场高光谱数据和 OLI8 多光谱图像用于突尼斯北部废弃铅锌矿区周围重金属含量预测和绘图

阅读:4
作者:Nouha Mezned, Faten Alayet, Belgacem Dkhala, Saadi Abdeljaouad

Abstract

Mining and smelting releases toxic contaminants such as zinc (Zn), lead (Pb) or cadmium (Cd) into the soil thereby poisoning it and rendering it unproductive. Remotely alternatives have been widely employed in the attempt of estimating heavy metal content within soils. The present study provides a methodological approach based on VNIR-SWIR field hyperspectral data and multispectral Landsat OLI 8 imageries for the prediction and mapping of Pb, Zn and Cd heavy metal contents around the abandoned Jebel Ressas mine site in Northern Tunisia. Thus, eighty-seven soil and tailing samples were collected from the study site and VNIR-SWIR field reflectances were measured on the same collection points, as well. All samples were analysed by atomic absorption for the estimation of heavy metal concentrations. The partial least squares regression PLSR was conducted considering the measured heavy metal concentrations and using multi-scale data: VNIR-SWIR field hyperspectral data and multispectral Landsat OLI 8 imagery. Standard normal variable (SNV) and multiple scatter correction (MSC) preprocessing methods were applied for further mapping improvement. Thus, this work aims to automate the estimation of the heavy metal contents in contaminated soils, by carrying out: a modeling approach based on the PLSR using VNIR-SWIR field hyperspectral data, ii) the mapping of Pb and Zn contents thanks to the exploitation of Landsat OLI8 multispectral imagery and iii) the application of both MSC and SNV preprocessing methods to optimize the performance of the developed models, when using such spectrally and spatially degraded data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。