Allele-specific and multiplex PCR based tools for cost-effective and comprehensive genetic testing in Congenital Adrenal Hyperplasia

基于等位基因特异性和多重 PCR 的工具,用于先天性肾上腺增生症的经济高效且全面的基因检测

阅读:4
作者:Lavanya Ravichandran, Deny Varghese, Parthiban R, Asha H S, Sophy Korula, Nihal Thomas, Aaron Chapla

Abstract

Congenital Adrenal Hyperplasia (CAH) is an autosomal recessive disorder due to enzyme defects in adrenal steroidogenesis. Several genes code for these enzymes, out of which mutations in the CYP21A2 gene resulting in 21 hydroxylase deficiency, contribute to the most common form of CAH. However, pseudogene imposed challenges complicate genotyping CYP21A2 gene, and there is also a lack of comprehensive molecular investigations in other genetic forms of CAH in India. Here, we describe a cost-effective, highly specific, and sensitive Allele Specific PCR (ASPCR) assay designed and optimized in-house to screen eight common pathogenic mutations in the CYP21A2 gene. We have also established and utilized a multiplex PCR assay for target enrichment and Next-generation sequencing (NGS) of CYP11B1, CYP17A1, POR, and CYP19A1 genes. Following preliminary amplification of the functional gene CYP21A2, ASPCR based genotyping of eight common mutations - P30L, I2G, 8BPdel, I172N, E6CLUS (I235N, V236E, M238K) V281L, Q318X, and R356W was carried out. These results were further validated using Sanger and Next-generation sequencing. Once optimized to be specific and sensitive, the advantage of ASPCR in CYP21A2 genotyping extends to provide genetic screening for both adult and paediatric subjects and carrier testing at a low cost and less time. Furthermore, multiplex PCR coupled NGS has shown to be cost-effective and robust for parallel multigene sequencing in CAH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。