miR-133a-3p inhibits the osteogenic differentiation of bone marrow mesenchymal stem cells by regulating ankyrin repeat domain 44

miR-133a-3p通过调控锚蛋白重复结构域44抑制骨髓间充质干细胞的成骨分化

阅读:7
作者:Mao Li, Ya-Jun Shen, Shuai Chai, Yu-Long Bai, Zhong-Hai Li

Abstract

In this study, we aimed to identify the specific microRNAs (miRNAs) that are involved in the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) from ovariectomized (OVX) mice, and to further explore the mechanism by which these miRNAs regulate osteogenic differentiation. Based on the existing studies, the expression of seven miRNAs in BMSCs from OVX mice was evaluated using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The expression of miR-133a-3p and osteogenesis-related genes (runt-related transcription factor 2 (Runx2), Osterix, alkaline phosphatase (ALP), and osteopontin) in BMSCs treated with miR-133a-3p mimics or inhibitors was detected by qRT-PCR or Western blotting. Osteogenesis efficiency was determined using ALP and alizarin red staining. The effector-target relationship between miR-133a-3p and ankyrin repeat domain 44 (ANKRD44) was confirmed by bioinformatics and a dual luciferase assay. Among the seven selected miRNAs, miR-133a-3p expression was significantly increased in BMSCs from OVX mice. Overexpression of miR-133a-3p dramatically inhibited the expression of osteogenesis-related genes in BMSCs and reduced ALP activity and mineralization. However, these processes were markedly ameliorated upon miR-133a-3p inhibition. Moreover, miR-133a-3p appeared to target ANKRD44, and the ANKRD44 expression was negatively regulated by miR-133a- 3p. Furthermore, ANKRD44 upregulation eliminated the anti-osteogenic differentiation effects of miR-133a-3p in BMSCs. Thus, our results indicated that miR-133a-3p inhibits the osteogenic differentiation of BMSCs by suppressing ANKRD44.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。