MiR-181c-5p Mitigates Tumorigenesis in Cervical Squamous Cell Carcinoma via Targeting Glycogen Synthase Kinase 3β Interaction Protein (GSKIP)

MiR-181c-5p 通过靶向糖原合酶激酶 3β 相互作用蛋白 (GSKIP) 减轻宫颈鳞状细胞癌的肿瘤发生

阅读:4
作者:Niuniu Li #, Chun Cheng #, Tieyan Wang

Background

Cervical cancer (CC) is a highly prevalent cancer and one of the main causes of death among women worldwide. The miR-181 family has turned out to be associated with tumorigenesis in a variety of tumors by regulating the expression of tumor-related genes. However, the mechanisms and biological function of miR-181c-5p in cervical squamous cell carcinoma (SCC) have not been well elucidated. Materials and

Conclusion

Taken together, miR-181c-5p was able to mitigate the cancer cell characteristic and invasive properties of cervical SCC through targeting GSKIP gene.

Methods

SiHa cell lines with specific gene overexpression vectors were constructed. Targetscan was used to predict the binding site of miR-181c-5p and GSKIP. MTT assay was used to detect the clone formation rate. Flow cytometry was used to detect the apoptosis rate and to separate the cell markers. The Transwell test was used to detect cell invasion. Immunohistochemistry was used to detect protein expression in tumor tissues. Western Blotting was used to detect the expression levels of related proteins.

Results

GSKIP was predicted to be the target gene of miR-181c-5p in cervical SCC. MiR-181c-5p overexpression suppressed SiHa cells proliferation and promoted apoptosis; the protein expressions of Ki67 and PCNA were decreased, but the expressions of Caspase-3 and Bax/Bcl-2 were increased. The overexpression of miR-181c-5p inhibited the stem-like properties of SiHa cells; the expressions of SOX2, OCT4 and CD44 were decreased. Furthermore, miR-181c-5p upregulation limited the invasion of SiHa cells; the expression of E-cadherin was higher, but the expressions of N-cadherin and Vimentin were lower. MiR-181c-5p overexpression inhibited tumorigenesis in cervical SCC tissues; the expressions of Ki67, Caspase-3, CD44 and Vimentin in vivo were consistent with those in vitro.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。