IL-17A deletion reduces sevoflurane-induced neurocognitive impairment in neonatal mice by inhibiting NF-κB signaling pathway

IL-17A 缺失通过抑制 NF-κB 信号通路减轻七氟醚诱导的新生小鼠神经认知障碍

阅读:5
作者:Qi Zhang, Yanan Li, Chunping Yin, Mingyang Gao, Jiaxu Yu, Junfei Guo, Xiaohui Xian, Zhiyong Hou, Qiujun Wang

Abstract

We investigated the role of IL-17A in sevoflurane-inducedneurocognitive impairment in neonatal mice. Seventy-two wild-type (WT) and 42 IL-17A knockout (KO) neonatal mice were randomly divided into WT (n = 36), IL-17A-/- (n = 6), sevoflurane (Sev, n = 36), and IL-17A-/- + sevoflurane (IL-17A-/- + Sev, n = 36) groups. The latter two groups were given 3% sevoflurane for 2 h per day on postnatal days (P) 6-8. Behavioral experiments were performed on P30-36. At P37, RNA sequencing and qRT-PCR of the hippocampus was performed, neurons were detected by Nissl staining, and neuropathological changes were evaluated by HE staining. NF-κB pathway-related proteins were evaluated by western blot and immunofluorescence analyses, IL-1β and IL-6 levels were assessed by ELISA. RNA sequencing identified 131 differentially expressed genes, highlighting several enriched biological processes (chemokine activity, immune response, extracellular region, extracellular space, inflammatory response) and signaling pathways (IL-17 signaling pathway, chemokine signaling pathway, cytokine-cytokine receptor interaction, ECM-receptor interaction and influenza A). Repeated sevoflurane exposures induced long-term cognitive impairment in WT mice. The cognitive impairment was comparatively less severe in IL-17A KO mice. In addition, the increased levels of NF-κB p65, iNOS, COX-2, IL-17A, IL-6 and IL-1β, reduced neuronal numbers and neuropathological changes were ameliorated in neonatal mice in the IL-17A-/- + Sev group compared with neonatal mice in Sev group. IL-17A deletion protects against long-term cognitive impairment induced by repeated sevoflurane exposure in neonatal mice. The underlying mechanism may relate to inhibiting NF-κB signaling pathway as well as the reducing neuroinflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。