Engineering a Novel Porin OmpGF Via Strand Replacement from Computational Analysis of Sequence Motif

通过序列基序的计算分析,通过链置换设计新型孔蛋白 OmpGF

阅读:3
作者:Meishan Lin, Ge Zhang, Monifa Fahie, Leslie K Morgan, Min Chen, Timothy A Keiderling, Linda J Kenney, Jie Liang

Abstract

β-Barrelmembrane proteins (βMPs) form barrel-shaped pores in the outer membrane of Gram-negative bacteria, mitochondria, and chloroplasts. Because of the robustness of their barrel structures, βMPs have great potential as nanosensors for single-molecule detection. However, natural βMPs currently employed have inflexible biophysical properties and are limited in their pore geometry, hindering their applications in sensing molecules of different sizes and properties. Computational engineering has the promise to generate βMPs with desired properties. Here we report a method for engineering novel βMPs based on the discovery of sequence motifs that predominantly interact with the cell membrane and appear in more than 75% of transmembrane strands. By replacing β1-β6 strands of the protein OmpF that lack these motifs with β1-β6 strands of OmpG enriched with these motifs and computational verification of increased stability of its transmembrane section, we engineered a novel βMP called OmpGF. OmpGF is predicted to form a monomer with a stable transmembrane region. Experimental validations showed that OmpGF could refold in vitro with a predominant β-sheet structure, as confirmed by circular dichroism. Evidence of OmpGF membrane insertion was provided by intrinsic tryptophan fluorescence spectroscopy, and its pore-forming property was determined by a dye-leakage assay. Furthermore, single-channel conductance measurements confirmed that OmpGF function as a monomer and exhibits increased conductance than OmpG and OmpF. These results demonstrated that a novel and functional βMP can be successfully engineered through strand replacement based on sequence motif analysis and stability calculation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。