Crosstalk of the IκB Kinase with Spliced X-Box Binding Protein 1 Couples Inflammation with Glucose Metabolic Reprogramming in Epithelial-Mesenchymal Transition

IκB激酶与剪接型X盒结合蛋白1的相互作用将炎症与上皮-间质转化中的葡萄糖代谢重编程联系起来

阅读:1
作者:Yingxin Zhao ,Jing Zhang ,Hong Sun ,Allan R Brasier

Abstract

Epithelial-mesenchymal transition (EMT) plays a critical role in airway injury, repair, and structural remodeling. IκB kinase (IKK)-NFκB signaling regulates late EMT-associated gene expression. However, IKK-mediated mesenchymal transition occurs earlier than NFκB/RelA subunit-dependent EMT gene expression, leading us to investigate the hypothesis that IKK plays an independent mechanism in transforming growth factor-β (TGFβ)-induced EMT. Time-resolved dissection of early proteome and phosphoproteome changes in response to TGFβ and a specific IKK inhibitor, BMS-345541, revealed that IKK regulates cascades of 23 signaling pathways essential in EMT, including TGFβ signaling, p38 mitogen associate protein kinase (MAPK), Toll receptor signaling, and integrin pathways. We identified early IKK-dependent phosphorylation of core regulatory proteins in essential EMT signaling cassettes, including ATF2, JUN, NFKB1/p105, and others. Interestingly, we found that IKKβ directly complexes with and phosphorylates the spliced X-box-binding protein 1 (XBP1s). XBP1s is an arm of the unfolded protein response (UPR) that activates the hexosamine biosynthetic pathway (HBP), a pathway that mediates protein N-glycosylation and survival from ER stress-induced apoptosis in EMT. We found that inhibition of IKK activity abolishes the phosphorylation of XBP1-T48, blocks XBP1s nuclear translocation, and inhibits the activation of HBP. Our study elucidates a previously unrecognized IKKβ-XBP1s-HBP crosstalk pathway that couples inflammation and glucose metabolic reprogramming in ETM. Because XBP1-HBP controls N-glycosylation of the extracellular matrix (ECM) in EMT, this novel IKKβ-XBP1-HBP pathway may contain therapeutic targets whose inhibition could prevent ECM remodeling in lung fibrosis or other airway remodeling diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。