BACKGROUND: Sepsis-associated acute kidney injury (S-AKI) has been reported to affect 30%-50% of all sepsis patients; this condition is associated with a notable fatality rate. Following lipopolysaccharide (LPS) stimulation, the expression of transient receptor potential cation channel subfamily M member 7 (TRPM7), a nonselective cation channel expressed by the renal tubular epithelial cells (RTECs)Â was found to be upregulated. We aimed to determine how TRPM7 functions in S-AKI. METHODS: To establish an in vitro model of S-AKI, RTECs were treated with LPS. The effect of TRPM7 knockdown on cell viability, lactate dehydrogenase (LDH) release, apoptosis, inflammation, and oxidative stress was studied. The binding site between Kruppel-like factor 2 (KLF2) and TRPM7 was predicted using JASPAR. The influence of KLF2 on the regulatory roles of TRPM7 in cells, as well as the effect of their knockdown on the MAPK signaling pathway, was investigated. RESULTS: TRPM7 was upregulated in LPS-treated cells, and knocking improved cell viability, reduced LDH levels, and minimized apoptosis, inflammation, and oxidative stress. KLF2 was shown to be associated with TRPM7 and its level decreased in LPS-treated cells. KLF2 knockdown increased TRPM7 expression and reversed the effects of TRPM7 knockdown in LPS-treated cells, including suppression of p38 MAPK, ERK1/2, and JNK activation. CONCLUSION: Taken together, our results show that TRPM7 is negatively regulated by KLF2 and promotes LPS-induced inflammatory dysfunction by activating the MAPK pathway in RTECs. The theoretical foundation for the prevention and management of S-AKI is laid out in this article.
TRPM7 promotes lipopolysaccharide-induced inflammatory dysfunction in renal tubular epithelial cells
TRPM7 促进脂多糖诱导的肾小管上皮细胞炎症功能障碍
阅读:11
作者:Yan Sun, Xiaobing Chen, Yongpeng Xie, Yanli Wang, Qian Zhang, Yu Lu, Xiaomin Li
| 期刊: | Immunity Inflammation and Disease | 影响因子: | 2.700 |
| 时间: | 2022 | 起止号: | 2022 Jul;10(7):e641. |
| doi: | 10.1002/iid3.641 | 研究方向: | 细胞生物学 |
| 细胞类型: | 上皮细胞 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
