The protective effect of HOXA5 on carotid atherosclerosis occurs by modulating the vascular smooth muscle cell phenotype

HOXA5 通过调节血管平滑肌细胞表型对颈动脉粥样硬化发挥保护作用

阅读:5
作者:Yuchen Jing, Bai Gao, Zhiyang Han, Lifang Xia, Shijie Xin

Abstract

The phenotypic change of vascular smooth muscle cells (VSMCs) from a contractile to a synthetic form is a key player in atherogenic processes. Homeobox A5 (HOXA5), a transcription factor of the homeobox gene family, has been shown to regulate cell differentiation and morphogenesis. The present study was designed to clarify the involvement of HOXA5 in VSMC phenotypic transition in carotid atherosclerosis (CAS). Activated VSMCs in vitro and ApoE-/- mice in vivo were employed to determine HOXA5's function. Results showed that both the mRNA and protein expression levels of HOXA5 were decreased in platelet-derived growth factor-BB (PDGF-BB)-induced VSMCs. Overexpression of HOXA5 suppressed VSMC conversion from a contractile to a synthetic type in the presence of PDGF-BB, as evidenced by increased contractile markers (calponin, α-SMA and SM22α) along with decreased synthetic markers (vimentin, PCNA and thrombospondin). PDGF-BB-induced proliferation and migration of VSMCs were recovered by HOXA5. Knockdown of HOXA5 had the opposite effect on VSMCs. In vivo, a CAS model was established using ApoE-/- mice fed with a Western-type diet and placing a perivascular carotid collar. We observed a significant reduction in HOXA5 in the carotid arteries of CAS mice. Similar to the in vitro results, HOXA5 overexpression reduced neointimal hyperplasia and plaque formation and inhibited VSMC dedifferentiation and migration. Furthermore, PPARγ was also downregulated in vitro and in vivo, and its antagonist GW9662 reversed HOXA5-mediated inhibition of VSMC dedifferentiation and migration. In summary, we suggest that HOXA5 protects against CAS progression by inhibiting VSMC dedifferentiation through activation of PPARγ.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。