Effects of Fibroblast Growth Factor 21 on Lactate Uptake and Usage in Mice with Diabetes-Associated Cognitive Decline

成纤维细胞生长因子 21 对糖尿病相关认知能力下降小鼠乳酸吸收和利用的影响

阅读:4
作者:Liangcai Zhao #, Haowei Jiang #, Jiaojiao Xie, Danjie Shen, Qingqing Yi, Jiapin Yan, Chen Li, Hong Zheng, Hongchang Gao

Abstract

Fibroblast growth factor 21 (FGF21) is an endocrine hormone that exerts beneficial effects on glucose and lipid metabolic homeostasis. However, the impact of FGF21 on type 1 diabetes-associated cognitive decline (DACD) and its mechanisms of action remain unclear. In this study, we aimed to evaluate the effects of FGF21 on lactate uptake and usage in a mouse model of streptozotocin-induced DACD. Six-week-old male C57BL/6 mice were divided into the control, diabetic, and FGF21 (which received 2 mg/kg recombinant human FGF21) groups. At the end of the treatment period, learning and memory performance, nuclear magnetic resonance-based metabonomics, and expressions of various hippocampal protein were analyzed to determine the efficacy of FGF21. The results showed that compared to the control mice, the diabetic mice had reduced long-term memory performance after the hyperglycemic insult; decreased hippocampal levels of lactate dehydrogenase-B (LDH-B) activity, bioenergy metabolites, and monocarboxylate transporter 2 (MCT2); and increased lactate levels. Impaired phosphoinositide 3-kinase (PI3K) signaling was also observed in the diabetic mice. However, FGF21 treatment improved LDH-B activity, β-nicotinamide adenine dinucleotide, and ATP levels, and increased MCT2 expression and PI3K signaling pathway, which in turn improved the learning and memory defects. These findings demonstrated that the effects of FGF21 on DACD were associated with its ability to improve LDH-B-mediated lactate usage and MCT2-dependent lactate uptake. Further, these beneficial effects of FGF21 in the hippocampus were mediated by the PI3K signaling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。