A quantitative method for screening and identifying molecular targets for nanomedicine

一种筛选和识别纳米药物分子靶点的定量方法

阅读:7
作者:Peng Guo, Jiang Yang, Diane R Bielenberg, Deborah Dillon, David Zurakowski, Marsha A Moses, Debra T Auguste

Abstract

Identifying a molecular target is essential for tumor-targeted nanomedicine. Current cancer nanomedicines commonly suffer from poor tumor specificity, "off-target" toxicity, and limited clinical efficacy. Here, we report a method to screen and identify new molecular targets for tumor-targeted nanomedicine based on a quantitative analysis. In our proof-of-principle study, we used comparative flow cytometric screening to identify ICAM-1 as a potential target for metastatic melanoma (MM). We further evaluated ICAM-1 as a MM targeting moiety by characterizing its (1) tumor specificity, (2) expression level, (3) cellular internalization, (4) therapeutic function, and (5) potential clinical impact. Quantitation of ICAM-1 protein expression on cells and validation by immunohistochemistry on human tissue specimens justified the synthesis of antibody-functionalized drug delivery vehicles, which were benchmarked against appropriate controls. We engineered ICAM-1 antibody conjugated, doxorubicin encapsulating immunoliposomes (ICAM-Dox-LPs) to selectively recognize and deliver doxorubicin to MM cells and simultaneously neutralize ICAM-1 signaling via an antibody blockade, demonstrating significant and simultaneous inhibitory effects on MM cell proliferation and migration. This paper describes a novel, quantitative metric system that identifies and evaluates new cancer targets for tumor-targeting nanomedicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。