Interplay Between MicroRNAs and Targeted Genes in Cellular Homeostasis of Adult Zebrafish (Danio rerio)

成年斑马鱼 (Danio rerio) 细胞稳态中微小 RNA 与靶基因之间的相互作用

阅读:6
作者:Ludivine Renaud, Willian A da Silveira, William B Glen Jr, Edward S Hazard; and; Gary Hardiman

Background

Cellular homeostasis is regulated by the intricate interplay between a plethora of signaling pathways and "energetic sensors" in organs. In order to maintain energy balance, induction or repression of metabolic pathways must be regulated and act in concert with the energetic demands of the cell at a given point in time. A new class of small noncoding RNAs, the microRNAs (miRNAs), has added yet further complexity to the control of metabolic homeostasis.

Conclusion

The result of our analyses revealed new insights into microRNA function in these tissues.

Methods

The liver (main site for detoxification) and the gut (primary exposure routes for contaminant exposure) were dissected out (wildtype fish), total and small RNA extracted, mRNA and miRNA libraries constructed and subjected to high throughput sequencing. Differential Expression (DE) analysis was performed comparing liver with gut and an "miRNA matrix" that integrates the miRNA-seq and mRNA-seq data was constructed.

Objective

Understanding the damages induced by toxins in the liver and the intestine as well as the interplay between the miRNome and transcriptome first requires baseline characterization in these tissues in healthy animals under cellular homeostasis.

Results

Both the miRNome and transcriptome of the liver and gut tissues were characterized and putative novel miRNAs were identified. Exploration of the "miRNA matrix" regulatory network revealed that miRNAs uniquely expressed in the liver or gut tissue regulated fundamental cellular processes important for both organs, and that commonly expressed miRNAs in both tissues regulated biological processes that were specific to either the liver or the gut.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。