Improved skeletal muscle fatigue resistance in experimental autoimmune myositis mice following high-intensity interval training

高强度间歇训练后实验性自身免疫性肌炎小鼠的骨骼肌抗疲劳能力得到改善

阅读:5
作者:Takashi Yamada, Yuki Ashida, Katsuyuki Tamai, Iori Kimura, Nao Yamauchi, Azuma Naito, Nao Tokuda, Håkan Westerblad, Daniel C Andersson, Koichi Himori

Background

Muscle weakness and decreased fatigue resistance are key manifestations of systemic autoimmune myopathies (SAMs). We here examined whether high-intensity interval training (HIIT) improves fatigue resistance in the skeletal muscle of experimental autoimmune myositis (EAM) mice, a widely used animal model for SAM.

Conclusions

HIIT improves fatigue resistance in a SAM mouse model, and this can be explained by the restoration of mitochondria oxidative capacity via inhibition of the ER stress pathway and PGC-1α-mediated mitochondrial biogenesis.

Methods

Female BALB/c mice were randomly assigned to control (CNT) or EAM groups (n = 28 in each group). EAM was induced by immunization with three injections of myosin emulsified in complete Freund's adjuvant. The plantar flexor (PF) muscles of mice with EAM were exposed to either an acute bout or 4 weeks of HIIT (a total of 14 sessions).

Results

The fatigue resistance of PF muscles was lower in the EAM than in the CNT group (P < 0.05). These changes were associated with decreased activities of citrate synthase and cytochrome c oxidase and increased expression levels of the endoplasmic reticulum stress proteins (glucose-regulated protein 78 and 94, and PKR-like ER kinase) (P < 0.05). HIIT restored all these alterations and increased the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and the mitochondrial electron transport chain complexes (I, III, and IV) in the muscles of EAM mice (P < 0.05). Conclusions: HIIT improves fatigue resistance in a SAM mouse model, and this can be explained by the restoration of mitochondria oxidative capacity via inhibition of the ER stress pathway and PGC-1α-mediated mitochondrial biogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。