Genetically Encoded FapR-NLuc as a Biosensor to Determine Malonyl-CoA in Situ at Subcellular Scales

基因编码的 FapR-NLuc 作为生物传感器在亚细胞尺度上原位测定丙二酰辅酶 A

阅读:5
作者:Yipeng Du, Hao Hu, Xiaoxia Pei, Kang Du, Taotao Wei

Abstract

Malonyl-CoA is one of the key metabolic intermediates in fatty acid metabolism as well as a key player in protein post-translational modifications. Detection of malonyl-CoA in live cells is challenging because of the lack of effective measuring tools. Here we developed a genetically encoded biosensor, FapR-NLuc, by combining a malonyl-CoA responsive bacterial transcriptional factor, FapR, with an engineered luciferase, NanoLuciferase (NLuc). FapR-NLuc specifically responds to malonyl-CoA and enables the rapid detection of malonyl-CoA at the micromolar level. More importantly, it is reflective of the fluctuations of malonyl-CoA in live cells. Upon being targeted to subcellular compartments, this biosensor can detect the changes of malonyl-CoA in situ within organelles. Thus, FapR-NLuc can potentially be used as a tool to study the kinetics of malonyl-CoA in live cells, which will shed light on the underlying mechanisms of malonyl-CoA-mediated biological processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。