The phosphatase PRL-3 affects intestinal homeostasis by altering the crypt cell composition

磷酸酶 PRL-3 通过改变肠隐窝细胞组成来影响肠道稳态

阅读:5
作者:Teresa Rubio, Judith Weyershaeuser, Marta G Montero, Andreas Hoffmann, Pablo Lujan, Martin Jechlinger, Rocio Sotillo, Maja Köhn

Abstract

Expression of the phosphatase of regenerating liver-3 (PRL-3) is known to promote tumor growth in gastrointestinal adenocarcinomas, and the incidence of tumor formation upon inflammatory events correlates with PRL-3 levels in mouse models. These carcinomas and their onset are associated with the impairment of intestinal cell homeostasis, which is regulated by a balanced number of Paneth cells and Lgr5 expressing intestinal stem cells (Lgr5+ ISCs). Nevertheless, the consequences of PRL-3 overexpression on cellular homeostasis and ISC fitness in vivo are unexplored. Here, we employ a doxycycline-inducible PRL-3 mouse strain to show that aberrant PRL-3 expression within a non-cancerous background leads to the death of Lgr5+ ISCs and to Paneth cell expansion. A higher dose of PRL-3, resulting from homozygous expression, led to mice dying early. A primary 3D intestinal culture model obtained from these mice confirmed the loss of Lgr5+ ISCs upon PRL-3 expression. The impaired intestinal organoid formation was rescued by a PRL inhibitor, providing a functional link to the observed phenotypes. These results demonstrate that elevated PRL-3 phosphatase activity in healthy intestinal epithelium impairs intestinal cell homeostasis, which correlates this cellular mechanism of tumor onset with PRL-3-mediated higher susceptibility to tumor formation upon inflammatory or mutational events.Key messages• Transgenic mice homozygous for PRL-3 overexpression die early.• PRL-3 heterozygous mice display disrupted intestinal self-renewal capacity.• PRL-3 overexpression alone does not induce tumorigenesis in the mouse intestine.• PRL-3 activity leads to the death of Lgr5+ ISCs and Paneth cell expansion.• Impairment of cell homeostasis correlates PRL-3 action with tumor onset mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。