RhoA/ROCK/ARHGAP26 signaling in the eutopic and ectopic endometrium is involved in clinical characteristics of adenomyosis

在位和异位子宫内膜中的 RhoA/ROCK/ARHGAP26 信号与子宫腺肌病的临床特征有关

阅读:5
作者:Caixia Jiang, Wei Gong, Rong Chen, Huihui Ke, Xiaoyan Qu, Weihong Yang, Zhongping Cheng

Conclusions

RhoA, ROCK1, and ROCK2 expression is upregulated, and ARHGAP26 expression is downregulated in adenomyosis. The RhoA/ROCK-mediated signaling pathway is associated with dysmenorrhea and menstrual capacity in adenomyosis.

Methods

Twenty patients with adenomyosis who underwent laparoscopy were recruited. Protein and mRNA expression of RhoA, ROCK1, ROCK2, and ARHGAP26 in EU and EC of patients with adenomyosis and in control endometrium without adenomyosis (CE) was detected.

Objective

This study aimed to investigate RhoA, RhoA-associated coiled-coil containing protein kinase (ROCK) 1, ROCK2, and Rho GTPase-activating protein 26 (ARHGAP26) expression in the eutopic endometrium (EU) and ectopic endometrium (EC), and examine their relationships with the clinical characteristics of adenomyosis.

Results

ROCK1, ROCK2, and RhoA mRNA expression in EU was significantly higher than that in CE, and was highest in EC. ARHGAP26 mRNA expression in EC and EU was significantly lower than that in CE. ROCK1, ROCK2, and RhoA protein expression in EC and EU was significantly higher than that in CE. ARHGAP26 protein expression in EC and EU was significantly lower than that in CE. ROCK1, ROCK2, and RhoA gene and protein expression was positively associated and ARHGAP26 was negatively associated with the severity of menorrhagia and menstrual capacity in adenomyosis. Conclusions: RhoA, ROCK1, and ROCK2 expression is upregulated, and ARHGAP26 expression is downregulated in adenomyosis. The RhoA/ROCK-mediated signaling pathway is associated with dysmenorrhea and menstrual capacity in adenomyosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。