Chemoattractants driven and microglia based biomimetic nanoparticle treating TMZ-resistant glioblastoma multiforme

化学引诱剂驱动和基于小胶质细胞的仿生纳米粒子治疗 TMZ 耐药性多形性胶质母细胞瘤

阅读:12
作者:Sai Qiao, Ying Cheng, Miao Liu, Qifeng Ji, Bangle Zhang, Qibing Mei, Daozhou Liu, Siyuan Zhou

Abstract

Currently, clinical treatment for temozolomide (TMZ)-resistant glioblastoma multiforme (GBM) is still a difficult problem. The aim of this paper is to set up a new GBM-targeted drug delivery system to treat TMZ-resistant GBM. Zoledronate (ZOL) not only induces apoptosis of TMZ-resistant GBM cells by down-regulation of farnesyl pyrophosphate synthetase (FPPS) but also increases the proportion of M1-type GBM associated macrophages (GAM). Based on chemoattractants secreted by GBM cells, a ZOL loaded nanoparticle coated with microglia cell membrane (ZOL@CNPs) was prepared to deliver ZOL to central nervous system to treat TMZ-resistant GBM. ZOL@CNPs was actively recruited to TMZ-resistant GBM region by CX3CL1/CX3CR1 and CSF-1/CSF-1R signal axis, and the release of ZOL from ZOL@CNPs was triggered by glutathione in GBM cells. ZOL@CNPs inhibited the growth of TMZ-resistant GBM through inducing apoptosis and inhibiting the migration and invasion of TMZ-resistant GBM cells. Besides, the immunosuppressive and hypoxic microenvironment, playing an important role in the growth of TMZ-resistant GBM, was significantly improved by ZOL@CNPs through increasing the proportion of M1-type GAM and blocking the expression of HIF-1α. ZOL@CNPs has a great potential application in the treatment for TMZ-resistant GBM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。