Substitution of the SERCA2 Cys674 reactive thiol accelerates atherosclerosis by inducing endoplasmic reticulum stress and inflammation

SERCA2 Cys674 反应性硫醇的取代通过诱导内质网应激和炎症来加速动脉粥样硬化

阅读:5
作者:Hang Su, Yu Mei, Shuangxue Luo, Haixia Wu, Yan He, Yasunaga Shiraishi, Pingping Hu, Richard A Cohen, Xiaoyong Tong

Background and purpose

The cysteine674 (C674) thiol of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 is easily and irreversibly oxidized under atherosclerotic conditions. However, the contribution of the C674 thiol redox status in the development of atherosclerosis remains unclear. Our goal was to elucidate the possible mechanism involved. Experimental approach: Heterozygous SERCA2 C674S knock-in mice in which half of the C674 was substituted by serine (S674) were used to mimic the removal of the reactive C674 thiol, which occurs under pathological conditions. Bone marrow-derived macrophages (BMDMs) and cardiac endothelial cells (ECs) were used for intracellular Ca2+ , macrophage adhesion, and protein expression analysis. The whole aorta and aortic root were isolated for histological analysis. Key

Purpose

The cysteine674 (C674) thiol of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 is easily and irreversibly oxidized under atherosclerotic conditions. However, the contribution of the C674 thiol redox status in the development of atherosclerosis remains unclear. Our goal was to elucidate the possible mechanism involved. Experimental approach: Heterozygous SERCA2 C674S knock-in mice in which half of the C674 was substituted by serine (S674) were used to mimic the removal of the reactive C674 thiol, which occurs under pathological conditions. Bone marrow-derived macrophages (BMDMs) and cardiac endothelial cells (ECs) were used for intracellular Ca2+ , macrophage adhesion, and protein expression analysis. The whole aorta and aortic root were isolated for histological analysis. Key

Results

Cell culture studies suggest the partial substitution of SERCA2 C674 increased intracellular Ca2+ levels and induced ER stress in both BMDMs and ECs. The release of proinflammatory factors and macrophage adhesion increased in SKI BMDMs. In ECs, overexpression of S674 induced endothelial inflammation and promoted macrophage recruitment. SKI mice developed more severe atherosclerotic plaque and macrophage accumulation. Additionally, 4-phenyl butyric acid, an ER stress inhibitor, suppressed ER stress and inflammatory responses in BMDMs and ECs, and alleviated atherosclerosis in SKI mice. Conclusions and implications: The substitution of SERCA2 C674 thiol accelerates the development of atherosclerosis by inducing ER stress and inflammation. Our findings highlight the importance of SERCA2 C674 redox state in the context of atherosclerosis and open up a novel therapeutic strategy to combat atherosclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。