Bioelectric, tissue, and molecular characteristics of the gastric mucosa at different times of ischemia

缺血不同时间胃黏膜的生物电、组织和分子特征

阅读:8
作者:Peña-Mercado Eduardo, Garcia-Lorenzana Mario, Patiño-Morales Carlos César, Montecillo-Aguado Mayra, Huerta-Yepez Sara, Beltran Nohra E

Abstract

Gastrointestinal ischemia may be presented as a complication associated with late shock detection in patients in critical condition. Prolonged ischemia can cause mucosal integrity to lose its barrier function, triggering alterations that can induce organ dysfunction and lead to death. Electrical impedance spectroscopy has been proposed to identify early alteration in ischemia-induced gastric mucosa in this type of patients. This work analyzed changes in impedance parameters, and tissue and molecular alterations that allow us to identify the time of ischemia in which the gastric mucosa still maintains its barrier function. The animals were randomly distributed in four groups: Control, Ischemia 60, 90, and 120 min. Impedance parameters were measured and predictive values were determined to categorize the degree of injury using a receiver operating characteristic curve. Markers of inflammatory process and apoptosis (iNOS, TNFα, COX-2, and Caspase-3) were analyzed. The largest increase in impedance parameters occurred in the ischemia 90 and 120 min groups, with resistance at low frequencies (RL) and reactance at high frequencies (XH) being the most related to damage, allowing prediction of the occurrence of reversible and irreversible tissue damage. Histological analysis and apoptosis assay showed progressive mucosal deterioration with irreversible damage (p < 0.001) starting from 90 min of ischemia. Furthermore, a significant increase in the expression of iNOS, TNFα, and COX-2 was identified in addition to apoptosis in the gastric mucosa starting from 90 min of ischemia. Tissue damage generated by an ischemia time greater than 60 min induces loss of barrier function in the gastric mucosa.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。