Gasdermin D mediates the pathogenesis of neonatal-onset multisystem inflammatory disease in mice

Gasdermin D 介导小鼠新生儿多系统炎症疾病的发病机制

阅读:4
作者:Jianqiu Xiao, Chun Wang, Juo-Chin Yao, Yael Alippe, Canxin Xu, Dustin Kress, Roberto Civitelli, Yousef Abu-Amer, Thirumala-Devi Kanneganti, Daniel C Link, Gabriel Mbalaviele

Abstract

Mutated NLRP3 assembles a hyperactive inflammasome, which causes excessive secretion of interleukin (IL)-1β and IL-18 and, ultimately, a spectrum of autoinflammatory disorders known as cryopyrinopathies of which neonatal-onset multisystem inflammatory disease (NOMID) is the most severe phenotype. NOMID mice phenocopy several features of the human disease as they develop severe systemic inflammation driven by IL-1β and IL-18 overproduction associated with damage to multiple organs, including spleen, skin, liver, and skeleton. Secretion of IL-1β and IL-18 requires gasdermin D (GSDMD), which-upon activation by the inflammasomes-translocates to the plasma membrane where it forms pores through which these cytokines are released. However, excessive pore formation resulting from sustained activation of GSDMD compromises membrane integrity and ultimately causes a pro-inflammatory form of cell death, termed pyroptosis. In this study, we first established a strong correlation between NLRP3 inflammasome activation and GSDMD processing and pyroptosis in vitro. Next, we used NOMID mice to determine the extent to which GSDMD-driven pyroptosis influences the pathogenesis of this disorder. Remarkably, all NOMID-associated inflammatory symptoms are prevented upon ablation of GSDMD. Thus, GSDMD-dependent actions are required for the pathogenesis of NOMID in mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。