Chronic inhibition of nitric oxide synthase modulates calcium handling in rat heart 1

慢性抑制一氧化氮合酶调节大鼠心脏钙处理 1

阅读:6
作者:Işıl Özakca, A Tanju Özçelikay

Abstract

Systemic infusion of nitric oxide synthase (NOS) inhibitors increases peripheral vascular resistance due to inhibition of endothelial NOS leading to the activation of the arterial baroreceptor mechanisms and inhibition of central sympathetic outflow. In the current study, we explored that systemic NOS blockage activates protein kinase A (PKA)-mediated signaling pathway through maintained cGMP-dependent protein kinase (PKG) activation. Rats were treated with 3 different concentrations of N(ω)-nitro-l-arginine methyl ester (L-NAME) for 14 days. Systemic L-NAME treatment induced a dose-dependent increase in blood pressure and increased mRNA levels of atrial natriuretic peptide (ANP) and phosphorylation levels of p44/42 MAPK without any change in cardiac mass. The cardiac cGMP levels and PKG-mediated phosphorylation of vasodilator-stimulated phosphoprotein (VASP) (Ser239) did not alter in any group. At the highest dose of treatment (100 mg/kg per day), PKA-mediated phosphorylations of VASP (Ser157) and troponin I (TnI) (Ser23/24) were enhanced significantly indicating the increase in PKA activation in response to chronic NOS blockage. Alterations in both phosphorylated phospholamban (Ser16/Thr17) and sarcoplasmic/endoplasmic Ca2+-ATPase (SERCA2) levels can increase cytosolic Ca2+ load and impair Ca2+ handling. Our data suggest that the increased PKA activation in response to chronic NOS blockage appears to be responsible for cardiac abnormalities that occur due to prolonged L-NAME treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。