Controlled masking and targeted release of redox-cycling ortho-quinones via a C-C bond-cleaving 1,6-elimination

通过 CC 键断裂 1,6-消除反应控制掩蔽和靶向释放氧化还原循环邻醌

阅读:5
作者:Lavinia Dunsmore, Claudio D Navo #, Julie Becher #, Enrique Gil de Montes #, Ana Guerreiro #, Emily Hoyt, Libby Brown, Viviane Zelenay, Sigitas Mikutis, Jonathan Cooper, Isaia Barbieri, Stefanie Lawrinowitz, Elise Siouve, Esther Martin, Pedro R Ruivo, Tiago Rodrigues, Filipa P da Cruz, Oliver Werz, 

Abstract

Natural products that contain ortho-quinones show great potential as anticancer agents but have been largely discarded from clinical development because their redox-cycling behaviour results in general systemic toxicity. Here we report conjugation of ortho-quinones to a carrier, which simultaneously masks their underlying redox activity. C-benzylation at a quinone carbonyl forms a redox-inactive benzyl ketol. Upon a specific enzymatic trigger, an acid-promoted, self-immolative C-C bond-cleaving 1,6-elimination mechanism releases the redox-active hydroquinone inside cells. By using a 5-lipoxygenase modulator, β-lapachone, we created cathepsin-B-cleavable quinone prodrugs. We applied the strategy for intracellular release of β-lapachone upon antibody-mediated delivery. Conjugation of protected β-lapachone to Gem-IgG1 antibodies, which contain the variable region of gemtuzumab, results in homogeneous, systemically non-toxic and conditionally stable CD33+-specific antibody-drug conjugates with in vivo efficacy against a xenograft murine model of acute myeloid leukaemia. This protection strategy could allow the use of previously overlooked natural products as anticancer agents, thus extending the range of drugs available for next-generation targeted therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。