Raman microspectroscopy fingerprinting of organoid differentiation state

拉曼显微光谱指纹识别类器官分化状态

阅读:5
作者:Kate Tubbesing, Nicholas Moskwa, Ting Chean Khoo, Deirdre A Nelson, Anna Sharikova, Yunlong Feng, Melinda Larsen, Alexander Khmaladze

Background

Organoids, which are organs grown in a dish from stem or progenitor cells, model the structure and function of organs and can be used to define molecular events during organ formation, model human disease, assess drug responses, and perform grafting in vivo for regenerative medicine approaches. For therapeutic applications, there is a need for nondestructive

Conclusions

As the organoids were unlabeled, intact, and hydrated at the time of imaging, Raman spectral fingerprints can be used to noninvasively distinguish between different organoid phenotypes for future applications in disease modeling, drug screening, and regenerative medicine.

Methods

Using complex 3D submandibular salivary gland organoids developed from embryonic progenitor cells, which respond to EGF by proliferating and FGF2 by undergoing branching morphogenesis and proacinar differentiation, we developed Raman confocal microspectroscopy methods to define Raman signatures for each of these organoid states using both fixed and live organoids.

Results

Three separate quantitative comparisons, Raman spectral features, multivariate analysis, and machine learning, classified distinct organoid differentiation signatures and revealed that the Raman spectral signatures were predictive of organoid phenotype. Conclusions: As the organoids were unlabeled, intact, and hydrated at the time of imaging, Raman spectral fingerprints can be used to noninvasively distinguish between different organoid phenotypes for future applications in disease modeling, drug screening, and regenerative medicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。