Development of a robust flow cytometry-based pharmacodynamic assay to detect phospho-protein signals for phosphatidylinositol 3-kinase inhibitors in multiple myeloma

开发一种基于流式细胞术的强大药效学检测方法,用于检测多发性骨髓瘤中磷脂酰肌醇 3-激酶抑制剂的磷酸化蛋白信号

阅读:13
作者:Congfen Li, Chikara Takahashi, Liangxuan Zhang, Mahrukh Huseni, Basha Stankovich, Haider Mashhedi, Joanna Lee, Dorothy French, Jeff Eastham Anderson, Doris Kim, Kathy Howell, Matthew J Brauer, Marcin Kowanetz, Yibing Yan, Eric Humke, Allen Ebens, Garret Hampton, Mark R Lackner, Priti Hegde, Shidong

Background

The phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in multiple myeloma (MM), a blood cancer associated with uncontrolled proliferation of bone marrow plasma cells. This study aimed to develop a robust clinical pharmacodynamic (PD) assay to measure the on-target PD effects of the selective PI3K inhibitor GDC-0941 in MM patients.

Conclusions

We developed a robust PD biomarker assay for the clinical evaluation of PI3K inhibitors in MM, allowing one to decipher the PD response in a relevant cell population. To our knowledge, this is the first report of an easily implemented clinical PD assay that incorporates an unbiased one-shot sample handling protocol, all (staining)-in-one (tube) phospho flow staining protocol, and an integrated modified data analysis for PD monitoring of kinase inhibitors in relevant cell populations in BMA and PB. The methods described here ensure a real-time, reliable and reproducible PD readout, which can provide information for dose selection as well as help to identify optimal combinations of targeted agents in early clinical trials.

Methods

We conducted an in vitro drug wash-out study to evaluate the feasibility of biochemical approaches in measuring the phosphorylation of S6 ribosomal protein (S6), one of the commonly used PD markers for PI3K pathway inhibition. We then developed a 7-color phospho-specific flow cytometry assay, or phospho flow assay, to measure the phosphorylation state of intracellular S6 in bone marrow aspirate (BMA) and peripheral blood (PB). Integrated mean fluorescence intensity (iMFI) was used to calculate fold changes of phosphorylation. Assay sensitivity was evaluated by comparing phospho flow with Meso Scale Discovery (MSD) and immunohistochemistry (IHC) assays. Finally, a sample handling method was developed to maintain the integrity of phospho signal during sample shipping and storage to ensure clinical application.

Results

The phospho flow assay provided single-cell PD monitoring of S6 phosphorylation in tumor and surrogate cells using fixed BMA and PB, assessing pathway modulation in response to GDC-0941 with sensitivity similar to that of MSD assay. The one-shot sample fixation and handling protocol herein demonstrated exceptional preservation of protein phosphorylation. In contrast, the IHC assay was less sensitive in terms of signal quantification while the biochemical approach (MSD) was less suitable to assess PD activities due to the undesirable impact associated with cell isolation on the protein phosphorylation in tumor cells. Conclusions: We developed a robust PD biomarker assay for the clinical evaluation of PI3K inhibitors in MM, allowing one to decipher the PD response in a relevant cell population. To our knowledge, this is the first report of an easily implemented clinical PD assay that incorporates an unbiased one-shot sample handling protocol, all (staining)-in-one (tube) phospho flow staining protocol, and an integrated modified data analysis for PD monitoring of kinase inhibitors in relevant cell populations in BMA and PB. The methods described here ensure a real-time, reliable and reproducible PD readout, which can provide information for dose selection as well as help to identify optimal combinations of targeted agents in early clinical trials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。