Production of the biocommodities butanol and acetone from methanol with fluorescent FAST-tagged proteins using metabolically engineered strains of Eubacterium limosum

使用代谢工程改造的Eubacterium limosum菌株,利用荧光FAST标记蛋白从甲醇生产生物商品丁醇和丙酮

阅读:4
作者:Maximilian Flaiz, Gideon Ludwig, Frank R Bengelsdorf, Peter Dürre

Background

The interest in using methanol as a substrate to cultivate acetogens increased in recent years since it can be sustainably produced from syngas and has the additional benefit of reducing greenhouse gas emissions. Eubacterium limosum is one of the few acetogens that can utilize methanol, is genetically accessible and, therefore, a promising candidate for the recombinant production of biocommodities from this C1 carbon source. Although several genetic tools are already available for certain acetogens including E. limosum, the use of brightly fluorescent reporter proteins is still limited.

Conclusions

The addition of FAST as an oxygen-independent fluorescent reporter protein expands the genetic toolbox of E. limosum. Moreover, our results show that FAST-tagged fusion proteins can be constructed without negatively impacting the stability, functionality, and productivity of the resulting enzyme. Finally, butanol and acetone can be produced from methanol using recombinant E. limosum strains expressing genes encoding fluorescent FAST-tagged fusion proteins.

Results

In this study, we expanded the genetic toolbox of E. limosum by implementing the fluorescence-activating and absorption shifting tag (FAST) as a fluorescent reporter protein. Recombinant E. limosum strains that expressed the gene encoding FAST in an inducible and constitutive manner were constructed. Cultivation of these recombinant strains resulted in brightly fluorescent cells even under anaerobic conditions. Moreover, we produced the biocommodities butanol and acetone from methanol with recombinant E. limosum strains. Therefore, we used E. limosum cultures that produced FAST-tagged fusion proteins of the bifunctional acetaldehyde/alcohol dehydrogenase or the acetoacetate decarboxylase, respectively, and determined the fluorescence intensity and product concentrations during growth. Conclusions: The addition of FAST as an oxygen-independent fluorescent reporter protein expands the genetic toolbox of E. limosum. Moreover, our results show that FAST-tagged fusion proteins can be constructed without negatively impacting the stability, functionality, and productivity of the resulting enzyme. Finally, butanol and acetone can be produced from methanol using recombinant E. limosum strains expressing genes encoding fluorescent FAST-tagged fusion proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。