Enhancement of antiviral activity of collectin trimers through cross-linking and mutagenesis of the carbohydrate recognition domain

通过碳水化合物识别域的交联和诱变增强胶原蛋白三聚体的抗病毒活性

阅读:10
作者:Mitchell R White, Patrick Boland, Tesfaldet Tecle, Donald Gantz, Grith Sorenson, Ida Tornoe, Uffe Holmskov, Barbara McDonald, Erika C Crouch, Kevan L Hartshorn

Abstract

Surfactant protein D (SP-D) plays important roles in innate defense against respiratory viruses [including influenza A viruses (IAVs)]. Truncated trimers composed of its neck and carbohydrate recognition domains (NCRDs) bind various ligands; however, they have minimal inhibitory activity for IAV. We have sought to find ways to increase the antiviral activity of collectin NCRDs. Cross-linking of the SP-D NCRD with nonblocking monoclonal antibodies (mAbs) markedly potentiates antiviral activity. In the present report, we demonstrate that F(ab')2 [but not F(ab')1] fragments of a cross-linking mAb have similar effects. Hence, cross-linking activity, but not the Fc domain of the mAb, is needed for increased antiviral activity. In contrast, the Fc domain of the mAb was important for increasing viral uptake or respiratory burst responses of human neutrophils. Our NCRD constructs contain an S protein binding site. Herein, we show that a multivalent S protein complex caused cross-linking and also increased the antiviral activity of NCRDs. NCRDs of conglutinin and CL43 had greater intrinsic antiviral activity than those of SP-D or mannose-binding lectin. Based on motifs found in these serum collectins, we have constructed mutant versions of the human SP-D NCRD that have increased antiviral activity. These mutant NCRDs also had potentiated activity after cross-linking with F(ab')2 fragments or S protein complexes. Hence, the antiviral activity of NCRDs can be increased by 2 distinct, complementary strategies, namely cross-linking of NCRDs through various means and mutagenesis of CRD residues to increase viral binding. These findings may be relevant for antiviral therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。