Dentate gyrus is needed for memory retrieval

齿状回是记忆检索所必需的

阅读:4
作者:Alejandro Carretero-Guillén, Mario Treviño, María Ángeles Gómez-Climent, Godwin K Dogbevia, Ilaria Bertocchi, Rolf Sprengel, Matthew E Larkum, Andreas Vlachos, Agnès Gruart, José M Delgado-García, Mazahir T Hasan3

Abstract

The hippocampus is crucial for acquiring and retrieving episodic and contextual memories. In previous studies, the inactivation of dentate gyrus (DG) neurons by chemogenetic- and optogenetic-mediated hyperpolarization led to opposing conclusions about DG's role in memory retrieval. One study used Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-mediated clozapine N-oxide (CNO)-induced hyperpolarization and reported that the previously formed memory was erased, thus concluding that denate gyrus is needed for memory maintenance. The other study used optogenetic with halorhodopsin induced hyperpolarization and reported and dentate gyrus is needed for memory retrieval. We hypothesized that this apparent discrepancy could be due to the length of hyperpolarization in previous studies; minutes by optogenetics and several hours by DREADD/CNO. Since hyperpolarization interferes with anterograde and retrograde neuronal signaling, it is possible that the memory engram in the dentate gyrus and the entorhinal to hippocampus trisynaptic circuit was erased by long-term, but not with short-term hyperpolarization. We developed and applied an advanced chemogenetic technology to selectively silence synaptic output by blocking neurotransmitter release without hyperpolarizing DG neurons to explore this apparent discrepancy. We performed in vivo electrophysiology during trace eyeblink in a rabbit model of associative learning. Our work shows that the DG output is required for memory retrieval. Based on previous and recent findings, we propose that the actively functional anterograde and retrograde neuronal signaling is necessary to preserve synaptic memory engrams along the entorhinal cortex to the hippocampal trisynaptic circuit.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。