A family of synthetic riboswitches adopts a kinetic trapping mechanism

合成核糖开关家族采用动力捕获机制

阅读:5
作者:Dennis M Mishler, Justin P Gallivan

Abstract

Riboswitches are sequences of RNA that control gene expression via RNA-ligand interactions, without the need for accessory proteins. Riboswitches consist of an aptamer that recognizes the ligand and an expression platform that couples ligand binding to a change in gene expression. Using in vitro selection, it is possible to screen large (∼ 10(13) members) libraries of RNA sequences to discover new aptamers. However, limitations in bacterial transformation efficiency make screening such large libraries for riboswitch function in intact cells impractical. Here we show that synthetic riboswitches function in an E. coli S30 extract in a manner similar to how they function in intact E. coli cells. We discovered that, although this family of riboswitches regulates the initiation of protein translation, the fate of whether an RNA message is translated is determined during transcription. Thus, ligand binding does not bias a population of rapidly equilibrating RNA structures, but rather, co-transcriptional ligand binding kinetically traps the RNA in a conformation that supports efficient translation. In addition to providing new insights into the mechanisms of action of a family of synthetic riboswitches, our experiments suggest that it may be possible to perform selections for novel synthetic riboswitches in an in vitro system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。