Regulation of UMSBP activities through redox-sensitive protein domains

通过氧化还原敏感蛋白结构域调节 UMSBP 活性

阅读:5
作者:Dotan Sela, Joseph Shlomai

Abstract

UMSBP is a CCHC-type zinc finger protein, which functions during replication initiation of kinetoplast DNA minicircles and the segregation of kinetoplast DNA networks. Interactions of UMSBP with origin sequences, as well as the protein oligomerization, are affected by its redox state. Reduction yields UMSBP monomers and activates its binding to DNA, while oxidation drives UMSBP oligomerization and impairs its DNA-binding activity. Kinetics analyses of UMSBP-DNA interactions revealed that redox affects the association of free UMSBP with the DNA, but has little effect on its dissociation from the nucleoprotein complex. A previously proposed model, suggesting that binding of DNA is regulated via the reversible interconversions of active UMSBP monomers and inactive oligomers, was challenged here, revealing that the two redox-driven processes are not interrelated. No correlation could be observed between DNA-binding inhibition and UMSBP oligomerization, upon oxidation of UMSBP. Moreover, while the presence of zinc ions was found to be essential for the interaction of UMSBP with DNA, UMSBP oligomerization occurred through zinc-depleted, unfolded zinc finger domains. Site directed mutagenesis analysis of UMSBP suggested that its unique methionine residue, which can be oxidized into methionine sulfoxide, is not involved in the redox-mediated regulation of UMSBP-DNA interactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。