A simple and effective method to purify and activate T cells for successful generation of chimeric antigen receptor T (CAR-T) cells from patients with high monocyte count

一种简单有效的纯化和激活 T 细胞的方法,可成功从单核细胞计数高的患者中生成嵌合抗原受体 T (CAR-T) 细胞

阅读:9
作者:Haiying Wang #, Shih-Ting Tsao #, Mingyuan Gu #, Chengbing Fu, Feng He, Xiu Li, Mian Zhang, Na Li, Hong-Ming Hu

Background

Chimeric antigen receptor T (CAR-T) cells are genetically modified T cells with redirected specificity and potent T-cell-mediated cytotoxicity toward malignant cells. Despite several CAR-T products being approved and commercialized in the USA, Europe, and China, CAR-T products still require additional optimization to ensure reproducible and cost-effective manufacture. Here, we investigated the critical parameters in the CD3+ T-cell isolation process that significantly impacted CAR-T manufacturing's success.

Conclusions

In this study, we discovered that selecting CD3+ T-cell isolation media is critical for improving T-cell activation, transduction, and CAR-T proliferation. Using DPBS as a CD3+ T cell isolation buffer significantly improved the success rate and shortened the duration of CAR-T production. The optimized process has been successfully applied in our ongoing clinical trials.

Methods

CAR-T cells were prepared from cryopreserved peripheral blood mononuclear cells (PBMC). The thawed PBMC was rested overnight before the CD3+ T cell isolation process using CTS™ Dynabeads™ CD3/CD28. Different isolation media, cell-bead co-incubation time, and cell density were examined in this study. Activated CD3+ T cells were transduced with a gamma retroviral vector carrying the CD19 or BCMA CAR sequence. The CAR-T cells proliferated in a culture medium supplemented with interleukin 2 (IL-2).

Results

CD14+ monocytes hindered T-cell isolation when X-VIVO 15 basic medium was used as the selection buffer. The activation of T cells was blocked because monocytes actively engulfed CD3/28 beads. In contrast, when DPBS was the selection medium, the T-cell isolation and activation were no longer blocked, even in patients whose PBMC contained abnormally high CD14+ monocytes and a low level of CD3+ T cells. Conclusions: In this study, we discovered that selecting CD3+ T-cell isolation media is critical for improving T-cell activation, transduction, and CAR-T proliferation. Using DPBS as a CD3+ T cell isolation buffer significantly improved the success rate and shortened the duration of CAR-T production. The optimized process has been successfully applied in our ongoing clinical trials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。