Ribociclib Hybrid Lipid-Polymer Nanoparticle Preparation and Characterization for Cancer Treatment

Ribociclib 混合脂质聚合物纳米颗粒的制备和表征及其用于癌症治疗

阅读:4
作者:Ramadan Al-Shdefat, Mohammad Hailat, Osama Y Alshogran, Wael Abu Dayyih, Ahmed Gardouh, Osaid Al Meanazel

Abstract

Ribociclib is a newly approved orally administered drug for breast cancer. This study aimed to prepare, characterize, and evaluate hybrid lipid-polymer nanoparticles (PLNs) of ribociclib to enhance its in vitro dissolution rate, pharmacokinetics, and anticancer efficacy. Ribociclib-loaded PLNs were prepared by solvent evaporation using the Box-Behnken design to optimize formulation variables. Particle size, entrapment efficiency, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), in vitro release cytotoxicity, molecular modeling, and pharmacokinetic studies were examined. The ribociclib-loaded PLN (formula 1, F1) was optimized in terms of particle size (266.9 ± 4.61 nm) and encapsulation efficiency (59.1 ± 2.57 mg/mL). DSC and thermogravimetric characterization showed the absence of a crystalline structure in the prepared PLNs, confirmed by FTIR, and showed no interactions between the components and the drug. AFM showed well-dispersed heterogeneously shaped nanoparticles. The in vitro release profile exhibited significant results for the optimized formula, reaching 100% at 600 and 90 min at pH 6.8 and 1.2, respectively. The low IC50 obtained by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay suggests that optimized PLN might serve as an effective delivery vehicle for cancer treatment, especially breast and lung cancer. Molecular modeling revealed several hydrogen bonds. A pharmacokinetic study in rats showed that the ribociclib formula had a 6.5-fold increase in maximum concentration (Cmax) and a 5.6-fold increase in area under the curve (AUC). Regarding the everted intestinal sac absorption, formula 1 increased ribociclib penetration relative to the physical combination and pure medication. In conclusion, optimized PLNs with enhanced physicochemical and cytotoxic properties and improved pharmacokinetic parameters were successfully prepared.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。