Transcriptional Regulation of Cellulose Biosynthesis during the Early Phase of Nitrogen Deprivation in Nannochloropsis salina

盐生微绿球藻氮缺乏早期纤维素生物合成的转录调控

阅读:3
作者:Seok Won Jeong, Seung Won Nam, Kwon HwangBo, Won Joong Jeong, Byeong-Ryool Jeong, Yong Keun Chang, Youn-Il Park

Abstract

Microalgal photosynthesis provides energy and carbon-containing precursors for the biosynthesis of storage carbohydrates such as starch, chrysolaminarin, lipids, and cell wall components. Under mild nitrogen deficiency (N-), some Nannochloropsis species accumulate lipid by augmenting cytosolic fatty acid biosynthesis with a temporary increase in laminarin. Accordingly, biosynthesis of the cellulose-rich cell wall should change in response to N- stress because this biosynthetic pathway begins with utilisation of the hexose phosphate pool supplied from photosynthesis. However, few studies have characterised microalgal cell wall metabolism, including oleaginous Nannochloropsis sp. microalgae subjected to nitrogen deficiency. Here, we investigated N-induced changes in cellulose biosynthesis in N. salina. We observed that N- induced cell wall thickening, concurrently increased the transcript levels of genes coding for UDPG pyrophosphorylase and cellulose synthases, and increased cellulose content. Nannochloropsis salina cells with thickened cell wall were more susceptible to mechanical stress such as bead-beating and sonication, implicating cellulose metabolism as a potential target for cost-effective microalgal cell disruption.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。