Optimization of a ligase detection reaction-fluorescent microsphere assay for characterization of resistance-mediating polymorphisms in African samples of Plasmodium falciparum

连接酶检测反应-荧光微球检测法的优化,用于表征非洲恶性疟原虫样本中抗性介导的多态性

阅读:6
作者:Norbert P LeClair, Melissa D Conrad, Frederick N Baliraine, Christian Nsanzabana, Samuel L Nsobya, Philip J Rosenthal

Abstract

Genetic polymorphisms in the malaria parasite Plasmodium falciparum mediate alterations in sensitivity to important antimalarial drugs. Surveillance for these polymorphisms is helpful in assessing the prevalence of drug resistance and designing strategies for malaria control. Multiple methods are available for the assessment of P. falciparum genetic polymorphisms, but they suffer from low throughput, technical limitations, and high cost. We have optimized and tested a multiplex ligase detection reaction-fluorescent microsphere (LDR-FM) assay for the identification of important P. falciparum genetic polymorphisms. For 84 clinical samples from Kampala, Uganda, a region where both transmission intensity and infection complexity are high, DNA was extracted from dried blood spots, genes of interest were amplified, amplicons were subjected to multiplex ligase detection reactions to add bead-specific oligonucleotides and biotin, fragments were hybridized to magnetic beads, and polymorphism prevalences were assessed fluorometrically in a multiplex format. A total of 19 alleles from the pfcrt, pfmdr1, pfmrp1, pfdhfr, and pfdhps genes were analyzed by LDR-FM and restriction fragment length polymorphism (RFLP) analyses. Considering samples with results from the two assays, concordance between the assays was good, with 78 to 100% of results identical at individual alleles, most nonconcordant results differing only between a mixed and pure genotype call, and full disagreement at individual alleles in only 0 to 3% of results. We estimate that the LDR-FM assay offers much higher throughput and lower cost than RFLP. Our results suggest that the LDR-FM system offers an accurate high-throughput means of classifying genetic polymorphisms in field samples of P. falciparum.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。