Deep sequencing reveals new roles for MuB in transposition immunity and target-capture, and redefines the insular Ter region of E. coli

深度测序揭示了 MuB 在转座免疫和靶标捕获中的新作用,并重新定义了大肠杆菌的岛状 Ter 区

阅读:5
作者:David M Walker, Rasika M Harshey

Background

The target capture protein MuB is responsible for the high efficiency of phage Mu transposition within the E. coli genome. However, some targets are off-limits, such as regions immediately outside the Mu ends (cis-immunity) as well as the entire ~ 37 kb genome of Mu (Mu genome immunity). Paradoxically, MuB is responsible for cis-immunity and is also implicated in Mu genome immunity, but via different mechanisms. This study was undertaken to dissect the role of MuB in target choice in vivo.

Conclusions

The results in this study demonstrate unambiguously the operation of two distinct mechanisms of Mu target immunity, only one of which is wholly dependent on MuB. The study also reveals several interesting and hitherto unknown aspects of Mu target choice in vivo, particularly the role of MuB in facilitating the capture of promoter and translation start site targets, likely by displacing macromolecular complexes engaged in gene expression. So also, MuB facilitates transposition into the restricted Ter region of the genome.

Results

We tracked Mu transposition from six different starting locations on the E. coli genome, in the presence and absence of MuB. The data reveal that Mu's ability to sample the entire genome during a single hop in a clonal population is independent of MuB, and that MuB is responsible for cis-immunity, plays a minor role in Mu genome immunity, and facilitates insertions into transcriptionally active regions. Unexpectedly, transposition patterns in the absence of MuB have helped extend the boundaries of the insular Ter segment of the E. coli genome. Conclusions: The results in this study demonstrate unambiguously the operation of two distinct mechanisms of Mu target immunity, only one of which is wholly dependent on MuB. The study also reveals several interesting and hitherto unknown aspects of Mu target choice in vivo, particularly the role of MuB in facilitating the capture of promoter and translation start site targets, likely by displacing macromolecular complexes engaged in gene expression. So also, MuB facilitates transposition into the restricted Ter region of the genome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。