Electrospun scaffolds limit the regenerative potential of the airway epithelium

电纺支架限制了气道上皮的再生潜力

阅读:14
作者:Cynthia M Schwartz, Jacob Stack, Cynthia L Hill, Scott W Lallier, Tendy Chiang, Jed Johnson, Susan D Reynolds

Conclusions

We conclude that epithelialization of a PET/PU scaffold is compromised by poor migration of native tissue-derived epithelial cells and by a lack of basal stem/progenitor cell proliferation within the scaffold. Level of evidence: NA.

Methods

Basal stem/progenitor cell frequency in sheep that underwent TETG implantation was determined using the clone-forming cell frequency (CFCF) method. A novel migration model that mimics epithelial migration toward an acellular scaffold was developed and used to compare epithelial migration toward a control polyester scaffold and the PET/PU scaffold. Basal stem/progenitor cell proliferation within the PET/PU scaffold was evaluated using the CFCF assay, doubling-time analysis, and mitotic cell quantification.

Objective

Significant morbidity and mortality are associated with clinical use of synthetic tissue-engineered tracheal grafts (TETG). Our previous work focused on an electrospun polyethylene terephthalate and polyurethane (PET/PU) TETG that was tested in sheep using a long-segment tracheal defect model. We reported that graft stenosis and limited epithelialization contributed to graft failure. The present study determined if the epithelialization defect could be attributed to: 1) postsurgical depletion of native airway basal stem/progenitor cells; 2) an inability of the PET/PU-TETG to support epithelial migration; or 3) compromised basal stem/progenitor cell proliferation within the PET/PU environment. Study design: Experimental.

Results

We report that TETG implantation did not decrease basal stem/progenitor cell frequency. In contrast, we find that epithelial migration toward the PET/PU scaffold was significantly less extensive than migration toward a polyester scaffold and that the PET/PU scaffold did not support basal stem/progenitor cell proliferation. Conclusions: We conclude that epithelialization of a PET/PU scaffold is compromised by poor migration of native tissue-derived epithelial cells and by a lack of basal stem/progenitor cell proliferation within the scaffold. Level of evidence: NA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。