Melamine Exacerbates Neurotoxicity in D-Galactose-Induced Neuronal SH-SY5Y Cells

三聚氰胺加剧 D-半乳糖诱导的神经元 SH-SY5Y 细胞的神经毒性

阅读:10
作者:Juhi Goyal, Preet Jain, Vivek Jain, Dibyajyoti Banerjee, Rajasri Bhattacharyya, Sharmistha Dey, Rambabu Sharma, Nitish Rai

Abstract

Numerous studies have depicted the role of diet and environmental toxins in aging. Melamine (Mel) is a globally known notorious food adulterant, and its toxicity has been shown in several organs including the brain. However, till now, there are no reports regarding Mel neurotoxicity in aging neurons. So, this study examined the in vitro neurotoxicity caused by Mel in the D-galactose (DG)-induced aging model of neuronal SH-SY5Y cells. In the present study, the neuronal SH-SY5Y cells were treated with DG and Mel separately and in combination to assess the neurotoxicity potential using MTT assay and neurite length measurement. Further, the superoxide dismutase (SOD), catalase (CAT), and total antioxidant activities were evaluated followed by the determination of the intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and caspase3 (Casp3) activity. The cotreatment of Mel and DG in neuronal SH-SY5Y cells showed maximum cell death than the cells treated with DG or Mel individually and untreated control cells. The neurite length shrinkage and ROS production were maximum in the DG and Mel cotreated cells showing exacerbated toxicity of Mel. The activity of SOD, CAT, and total antioxidants was also found to be lowered in the cotreatment group (Mel + DG) than in Mel- or DG-treated and untreated cells. Further, the combined toxicity of Mel and DG also elevated the Casp3 activity more than any other group. This is the first study showing the increased neurotoxic potential of Mel in an aging model of neuronal SH-SY5Y cells which implicates that Mel consumption by the elderly may lead to increased incidences of neurodegeneration like Alzheimer's disease and Parkinson's disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。