N6-methyladenosine-modified TRIM37 augments sunitinib resistance by promoting the ubiquitin-degradation of SmARCC2 and activating the Wnt signaling pathway in renal cell carcinoma

N6-甲基腺苷修饰的TRIM37通过促进SmARCC2泛素降解并激活肾细胞癌中的Wnt信号通路来增强舒尼替尼耐药性

阅读:5
作者:Qiang Luo, Ting Dai, Yihong Dong, Jianpeng Liang, Zhipeng Xu, Zhixia Sun

Abstract

Tripartite motif-containing 37 (TRIM37) is reportedly a key member of the superfamily of TRIM proteins. Emerging evidence underscores the close association between dysregulated TRIM37 expression and the progression of various human malignancies. However, the precise biological functions and regulatory mechanisms of TRIM37 remain elusive. This study aimed to elucidate the impact of TRIM37 on the chemotherapy sensitivity of renal cell carcinoma (RCC) and uncover its specific molecular regulatory role. Using RT-qPCR and western blot assays, we assessed TRIM37 expression in both RCC patients and RCC cells. Through in vitro and in vivo experiments, we investigated the effects of TRIM37 silencing and overexpression on RCC cell proliferation, stemness capacity, and chemotherapy sensitivity using colony formation and sphere formation assays. Additionally, a co-immunoprecipitation (Co-IP) experiment was conducted to explore putative interacting proteins. Our results revealed elevated TRIM37 expression in both RCC patient tumor tissues and RCC cells. Functional experiments consistently demonstrated that TRIM37 silencing reduced proliferation and stemness capacity while enhancing chemotherapy sensitivity in RCC cells. Furthermore, we discovered that TRIM37 mediates the degradation of SMARCC2 via ubiquitin-proteasome pathways, thereby further activating the Wnt signaling pathway. In conclusion, this study not only sheds light on the biological role of TRIM37 in RCC progression but also identifies a potential molecular target for therapeutic intervention in RCC patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。