Molecular evolutionary engineering of xylose isomerase to improve its catalytic activity and performance of micro-aerobic glucose/xylose co-fermentation in Saccharomyces cerevisiae

木糖异构酶分子进化工程提高其催化活性及在酿酒酵母微氧葡萄糖/木糖共发酵中的性能

阅读:7
作者:Taisuke Seike, Yosuke Kobayashi, Takehiko Sahara, Satoru Ohgiya, Yoichi Kamagata, Kazuhiro E Fujimori

Background

Expression of d-xylose isomerase having high catalytic activity in Saccharomyces cerevisiae (S. cerevisiae) is a prerequisite for efficient and economical production of bioethanol from cellulosic biomass. Although previous studies demonstrated functional expression of several xylose isomerases (XI) in S. cerevisiae, identification of XIs having higher catalytic activity is needed. Here, we report a new strategy to improve xylose fermentation in the S. cerevisiae strain IR-2 that involves an evolutionary engineering to select top-performing XIs from eight previously reported XIs derived from various species.

Conclusions

This study demonstrated that LpXI has the highest d-xylose consumption rate among the XIs expressed in IR-2 under micro-aerobic co-fermentation conditions. A combination of novel mutations (T63I and V162A) significantly improved the enzymatic activity of LpXI, indicating that LpXI-T63I/V162A would be a potential construct for highly efficient production of cellulosic ethanol.

Results

Eight XI genes shown to have good expression in S. cerevisiae were introduced into the strain IR-2 having a deletion of GRE3 and XKS1 overexpression that allows use of d-xylose as a carbon source. Each transformant was evaluated under aerobic and micro-aerobic culture conditions. The strain expressing XI from Lachnoclostridium phytofermentans ISDg (LpXI) had the highest d-xylose consumption rate after 72 h of micro-aerobic fermentation on d-glucose and d-xylose mixed medium. To enhance LpXI catalytic activity, we performed random mutagenesis using error-prone polymerase chain reaction (PCR), which yielded two LpXI candidates, SS82 and SS92, that showed markedly improved fermentation performance. The LpXI genes in these clones carried either T63I or V162A/N303T point mutations. The SS120 strain expressing LpXI with the double mutation of T63I/V162A assimilated nearly 85 g/L d-glucose and 35 g/L d-xylose to produce 53.3 g/L ethanol in 72 h with an ethanol yield of approximately 0.44 (g/g-input sugars). An in vitro enzyme assay showed that, compared to wild-type, the LpXI double mutant in SS120 had a considerably higher V max (0.107 µmol/mg protein/min) and lower K m (37.1 mM). Conclusions: This study demonstrated that LpXI has the highest d-xylose consumption rate among the XIs expressed in IR-2 under micro-aerobic co-fermentation conditions. A combination of novel mutations (T63I and V162A) significantly improved the enzymatic activity of LpXI, indicating that LpXI-T63I/V162A would be a potential construct for highly efficient production of cellulosic ethanol.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。